Collapsing non-idempotent intersection types

نویسنده

  • Thomas Ehrhard
چکیده

We proved recently that the extensional collapse of the relational model of linear logic coincides with its Scott model, whose objects are preorders and morphisms are downwards closed relations. This result is obtained by the construction of a new model whose objects can be understood as preorders equipped with a realizability predicate. We present this model, which features a new duality, and explain how to use it for reducing normalization results in idempotent intersection types (usually proved by reducibility) to purely combinatorial methods. We illustrate this approach in the case of the call-by-value lambda-calculus, for which we introduce a new resource calculus, but it can be applied in the same way to many different calculi. 1998 ACM Subject Classification F.3.2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representing permutations without permutations, or the expressive power of sequence types

We show that every (finite or not) typing derivation of system M, using non-idempotent intersection, which is the infinitary version of de Carvalho’s system M0, can be represented in a rigid, non-idempotent intersection type system S. Namely, whereas non-idempotent intersection is represented by multisets in system M, system S resort to families of types indexed by integers, called tracks. The ...

متن کامل

Inhabitation for Non-idempotent Intersection Types

The inhabitation problem for intersection types in λ-calculus is known to be undecidable. We study the problem in the case of non-idempotent intersection, considering several type assignment systems, which characterize the solvable or the strongly normalizing λ-terms. We prove the decidability of the inhabitation problem for all the systems considered, by providing sound and complete inhabitati...

متن کامل

Filter Models: Non-idempotent Intersection Types, Orthogonality and Polymorphism

This paper revisits models of typed λ-calculus based on filters of intersection types: By using non-idempotent intersections, we simplify a methodology that produces modular proofs of strong normalisation based on filter models. Non-idempotent intersections provide a decreasing measure proving a key termination property, simpler than the reducibility techniques used with idempotent intersection...

متن کامل

Complexity of Strongly Normalising λ-Terms via Non-idempotent Intersection Types

We present a typing system for the λ-calculus, with non-idempotent intersection types. As it is the case in (some) systems with idempotent intersections, a λ-term is typable if and only if it is strongly normalising. Nonidempotency brings some further information into typing trees, such as a bound on the longest β-reduction sequence reducing a term to its normal form. We actually present these ...

متن کامل

The Inhabitation Problem for Non-idempotent Intersection Types

The inhabitation problem for intersection types is known to be undecidable. We study the problem in the case of non-idempotent intersection, and we prove decidability through a sound and complete algorithm. We then consider the inhabitation problem for an extended system typing the λ-calculus with pairs, and we prove the decidability in this case too. The extended system is interesting in its o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012